1. Dibawah
ini adalah berat badan bayi laki – laki usia 5 bulan (X1) dan pada
usia 11 bulan (X2) (data fiktif). Hitung nilai rata – rata,
variance, standard deviasi dan lakukan uji t dependen sample.
No
|
X1
(kg)
|
X2
(kg)
|
Beda
D = X1 – X2 |
Deviasi
d = D - ![]() |
Kuadrat
deviasi = d2
|
1
|
4,5
|
5,6
|
-1.1
|
0.26
|
0.0676
|
2
|
4,7
|
5,9
|
-1.2
|
-1.2
|
1.44
|
3
|
4,6
|
6,2
|
-1.6
|
-1.6
|
2.56
|
4
|
4,8
|
6,2
|
-1.4
|
-1.4
|
1.96
|
5
|
4,9
|
5,9
|
-1
|
-1
|
1
|
6
|
4,8
|
5,8
|
-1
|
-1
|
1
|
7
|
4,5
|
6,2
|
-1.7
|
-1.7
|
2.89
|
8
|
4,7
|
6,4
|
-1.7
|
-1.7
|
2.89
|
9
|
4,9
|
6,3
|
-1.4
|
-1.4
|
1.96
|
10
|
4,6
|
6,1
|
-1.5
|
-1.5
|
2.25
|
Jumlah
|
47
|
60.6
|
-13.6
|
-12.24
|
18.0176
|
Rerata
|
4.7
|
6.06
|
|
|
|
SD
|
0.149071
|
0.250333
|
|
|
|
Varians
|
0.022222
|
0.062667
|
|
|
|
Rerata D (
![]() |
|
|
a. Asumsi
: Data yang diuji adalah berpasangan (paired) yang diambil secara random dan
distribusinya normal, masing – masing subjek independen dan varians nya di duga
tidak berbeda ;
b. Hipotesa
: Ho : µ1 = µ2 dan Ha : µ1 µ2
c. Uji
Statistik adalah uji t – berpasangan (paired t – test)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image005.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image007.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image009.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image011.png)
d. Distribusi
uji statistik : bila Ho diterima maka uji statistik dilakukan dengan derajat
kebebasan = n – 1;
e. Pengambilan
keputusan : α = ,05 dan nilai kritis t ± 2,306
f. Perhitungan
statistik: kita hitung varians nilai D yaitu
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image013.png)
=
à
Nilai
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image015.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image017.png)
Dan nilai
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image019.png)
Hasil Uji ![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image021.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image021.png)
Kita ambil nilai
mutlak yaitu -3,042
g. Keputusan
statistik: karena
t.hitung
= 3,042 > t-tabel, dk = 9, α = 0,05 = 2,262
kita
berkeputusan untuk menolak hipotesa nol.
h. Kesimpulan
: ada perbedaan berat badan bayi laki – laki 5 bulan dan bayi laki – laki 11
bulan
2) Data kadar
trigliserida pria dewasa gemuk dan normal yang diukur dengan indeks Massa Tubuh
(IMT) sebagai berikut (data fiktif).
No
|
Gemuk (Y)
|
Normal (X)
|
Y-rerata Y
|
X-rerataX
|
1
|
240
|
180
|
1
|
4
|
2
|
260
|
175
|
21
|
-1
|
3
|
230
|
160
|
-9
|
-16
|
4
|
220
|
190
|
-19
|
14
|
5
|
260
|
180
|
21
|
4
|
6
|
250
|
175
|
11
|
-1
|
7
|
240
|
190
|
1
|
14
|
8
|
220
|
170
|
-19
|
-6
|
9
|
230
|
180
|
-9
|
4
|
10
|
240
|
160
|
1
|
-16
|
Jumlah
|
2390
|
1760
|
0
|
0
|
Rerata
|
239
|
176
|
|
|
SD
|
14.49
|
10.49
|
||
Varians
|
210
|
110
|
a.
Asumsi:
Data yang di uji adalah data 2 kelompok independen yang diambil secara random
dan distribusinya normal, masing-masing subjek independen dan variansnya diduga
tidak berbeda;
b.
Hipotesa:
Ho : µ1 = µ2 dan Ha: µ1 µ2
c.
Uji
statistic adalah uji t-independen
d.
Distribusi
uji statistic: bila Ho diterima maka uji statistic dilakukan dengan derajat
kebebasan = n1 + n2 – 2;
e.
Pengambilan
keputusan: α= .05 dan nilai kritis t ± 2.0484
f.
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image002.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image002.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image004.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image006.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image008.png)
Hasil
uji t = ![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image010.png)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image010.png)
g.
Keputusan
statistic: karena t-hitung = 11.07 > t-tabel, dk=8,
α=0.05 = 2.26216 kita berkeputusan untuk menolak hipotesa nol;
h.
Kesimpulan:
ada perbedaan yang bermakna nilai
atau ada perbedaan yang bermakna rerata kadar trigliserida
pria dewasa gemuk dan normal yang diukur dengan IMT. 213.5/
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image012.png)
Nilai
rata-rata IQ dari 26 siswa SMP X adalah 107 dengan standar deviasi 9, sedangkan
di SMP Y dari 30 siswa rata-rata IQ nya adalah 112 dengan standar deviasi 8. Dapatkah
kita menyatakan bahwa ada perbedaan secara bermakna nilai rata-rata IQ siswa di
kedua sekolah?
Jawab:
a. Asumsi:
Data yang di uji adalah data 2 kelompok independen yang diambil secara random
dan distribusinya normal, masing-masing subjek independen dan variansnya diduga
tidak berbeda.
b. Hipotesa:
Ho: µ1 = µ2 dan Ha: µ1 ≠ µ2
c. Uji
statistik adalah uji t-independen
“pooled
variance”
adalah
=
d. Distribusi
uji statistik: bila Ho diterima maka uji statistik dilakukan dengan derajat kebebasan = n1
+ n2 – 2 = 26 + 30 – 2 = 54
e. Pengambilan
keputusan: α = 0,05 dan nilai kritis t + 1,67356
f. Perhitungan
statistik:
= (26-1)(9)2 + (30-1)(8)2
= 71,87
26+30-2
=
=
=
8,48
Hasil
uji
= 26-30 = |- 1,818|
8,48
Kita
ambil nilai mutlak yaitu 1,818
g. Keputusan
statistik: karena thitung = 1,818 > ttabel,
dk=54, α = 0,05 = 1,67356, kita berkeputusan untuk menolak hipotesa nol;
h. Kesimpulan:
ada perbedaan yang bermakna nilai
dan
atau ada perbedaan yang bermakna rerata
IQ anak SMP X dan SMP Y
Latihan halaman 14
Kita ingin membuktikan perbedaan kadar glukosa darah
mahasiswa sebelum dan sesudah sarapan pagi.
Jawab :
Subjek
|
Sebelum X1
|
Sesudah X2
|
Beda
D= X1-X2
|
Deviasi d=D-D
|
Kuadrat deviasi = d2
|
1
|
115
|
121
|
-6
|
-0,1
|
0,01
|
2
|
118
|
119
|
-1
|
4,9
|
24,01
|
3
|
120
|
122
|
-2
|
3,9
|
15,21
|
4
|
119
|
122
|
-3
|
2,9
|
8,41
|
5
|
116
|
123
|
-7
|
-1,1
|
1,21
|
6
|
115
|
123
|
-8
|
-2,1
|
4,41
|
7
|
116
|
124
|
-8
|
-2,1
|
4,41
|
8
|
115
|
120
|
-5
|
0,9
|
0,81
|
9
|
116
|
125
|
-9
|
-3,1
|
9,61
|
10
|
117
|
127
|
-10
|
-4,1
|
16,81
|
Jml
|
1167
|
1226
|
-59
|
0
|
84,9
|
Rerata D (D) = D/n = -5,9
|
|
|
a. Asumsi
: Data yang diuji adalah berpasangan (paired) yang diambil secara random dan
distribusinya normal, masing-masing subjek independen dan varians nya di duga
tidak berbeda
b. Hipotesa:
Ho : μ1 = μ2 dan Ha: μ1= μ
c. Uji
statistik adalah uji t-berpasangan (paired t-test)
d. Distribusi
uji statistik: bila Ho diterima maka uji statistik dilakukan dengan derajat
kebebasan = n-1;
e. Pengambilan
keputusan: α = 0.05 dan nilai kritis t = 2,26
f. Perhitungan
statistik : kita hitung varians nilai D yaitu
S2(D) =
)2 = 1/9 * (84,9) = 9,43 nilai SD =
= 3,07
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image002.gif)
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image004.gif)
Nilai SE =
= 0,97
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image006.gif)
Hasil uji t = D / SE
= -5,9/0,97 = |-6,08| maka kita ambil nilai mutlak yaitu 6,08
g. Keputusan
statistik : karena
thitung = 6,08 > ttabel,dk=9,
α=0.05 = 2,26
Kita berkeputusan untuk menolak
hipotesa nol
h. Kesimpulan
: ada perbedaan kadar glukosa darah mahasiswa sebelum dan sesudah sarapan pagi
![](file:///C:\Users\user\AppData\Local\Temp\msohtmlclip1\01\clip_image008.gif)
Hasil Penelitian tentang
peran senam ' low impact' pada remaja putri usia 18-21 tahun terhadap penurunan
persen lemak tubuh disajikan dalam tabel dibawah ini (data fiktif). Dapatkah
kita menyatakan bahwa 'low impact' tidak berpengaruh terhadap persen lemak
tubuh.
Subjek
|
Sebelum
|
Sesudah
|
Beda
|
Deviasi
|
Kuadrat
|
|
|
|
|
deviasi = d2
|
|
1
|
24,7
|
24,5
|
0,2
|
-1,45
|
2,1025
|
2
|
26,4
|
25,6
|
0,8
|
0,8
|
0,64
|
3
|
28,7
|
26,9
|
1,8
|
1,8
|
3,24
|
4
|
27,2
|
26,1
|
1,1
|
1,1
|
1,21
|
5
|
24,9
|
24,2
|
0,7
|
0,7
|
0,49
|
6
|
29,9
|
27,3
|
2,6
|
2,6
|
6,76
|
7
|
28,6
|
25,7
|
2,9
|
2,9
|
8,41
|
8
|
28,8
|
25,7
|
3,1
|
3,1
|
9,61
|
Jumlah
|
219,2
|
206
|
13,2
|
11,55
|
32,4625
|
|
Rerata D ( ) = D/n =
|
1,65
|
|
|
a. Asumsi
: Data yang diuji adalah berpasangan (paired) yang diambil secara random dan
distribusinya normal, masing-masing subjek independen dan varians nya di duga
tidak berbeda
b. Hipotesa:
Ho : μ1 = μ2 dan Ha: μ1= μ
c. Uji
statistik adalah uji t-berpasangan (paired t-test)
d. Distribusi
uji statistik: bila Ho diterima maka uji statistik dilakukan dengan derajat
kebebasan = n-1;
e. Pengambilan
keputusan: α = 0.05 dan nilai kritis t = 2,36
f. Perhitungan
statistik : kita hitung varians nilai D yaitu
S2( ) =
)2
= 1/7 * (32,5) = nilai S =
= 2,15
Nilai
SE =
=
0,76
Hasil uji t = / SE
= 1,65/ 0,76= |2,17| maka kita ambil nilai mutlak yaitu 2,17
g. Keputusan
statistik : karena
thitung = 2,17 > ttabel,dk=7,
α=0.05 = 2,36
Kita berkeputusan untuk menerima hipotesa
nol
h. Kesimpulan : bahwa 'low impact' tidak
berpengaruh terhadap persen lemak tubuh.
Tidak ada komentar:
Posting Komentar